Habitable worlds with no signs of life.

نویسنده

  • Charles S Cockell
چکیده

'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds

Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments...

متن کامل

Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?

The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST). Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable ...

متن کامل

Beyond the principle of plentitude: a review of terrestrial planet habitability.

We review recent work that directly or indirectly addresses the habitability of terrestrial (rocky) planets like the Earth. Habitability has been traditionally defined in terms of an orbital semimajor axis within a range known as the habitable zone, but it is also well known that the habitability of Earth is due to many other astrophysical, geological, and geochemical factors. We focus this rev...

متن کامل

Life-hostile conditions in the early universe can increase the present-day odds of observing extragalactic life

High-energy astrophysical events that cause galaxy-scale extinctions have been proposed as a way to explain or mollify the Fermi Paradox, by making the universe at earlier times more dangerous for evolving life, and reducing its present-day prevalence. Here, we present an anthropic argument that a more dangerous early universe can have the opposite effect, actually increasing estimates for the ...

متن کامل

Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214⋆

High-precision eclipse spectrophotometry of transiting terrestrial exoplanets represents a promising path for the first atmospheric characterizations of habitable worlds and the search for life outside our solar system. The detection of terrestrial planets transiting nearby late-type M-dwarfs could make this approach applicable within the next decade, with soon-to-come general facilities. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 372 2014  شماره 

صفحات  -

تاریخ انتشار 2014